Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue.

نویسندگان

  • G Yao
  • L V Wang
چکیده

Ultrasound-modulated optical tomography in biological tissue was studied both theoretically and experimentally. An ultrasonic beam was focused into biological tissue samples to modulate the laser light passing through the ultrasonic beam inside the tissue. The ultrasound-modulated laser light reflects the local optical and mechanical properties in the ultrasonic beam and permits tomographic imaging of biological tissues by scanning. Parallel detection of the speckle field formed by the transmitted laser light was implemented with the source-synchronous-illumination lock-in technique to improve the signal-to-noise ratio. Two-dimensional images of biological tissues were successfully obtained experimentally with a laser beam at either normal or oblique incidence, which showed that ultrasound-modulated optical tomography depends on diffuse light rather than on ballistic light. Monte Carlo simulations showed that the modulation depth decreased much more slowly than the diffuse transmittance, which indicated the possibility that even thicker biological tissues can be imaged with this technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues.

Ultrasound-modulated optical tomography of thick biological tissues was studied based on speckle-contrast detection. Speckle decorrelation was investigated with biological tissue samples of various thicknesses. Images of optically absorbing objects buried in biological tissue samples with thicknesses up to 50 mm were obtained in a transmission-detection configuration. The image contrast was mor...

متن کامل

Multi-optical-wavelength ultrasound-modulated optical tomography: a phantom study.

We used multiple optical wavelengths to study ultrasound-modulated optical tomography (UOT) in tissue phantoms. By using intense acoustic bursts and a CCD camera-based speckle contrast detection technique, we observed variations of the ultrasound-modulated signal at various optical absorptions. The experimental variations were found to be highly correlated with predictions from Monte Carlo simu...

متن کامل

Ultrasound-modulated optical computed tomography of biological tissues

An optical imaging technique called ultrasound-modulated optical computed tomography is demonstrated for tomographic imaging of biological tissues. Ultrasound-modulated optical signals are extracted from scattered light to provide projection data for the image reconstruction. A filtered back-projection algorithm is implemented to reconstruct an image reflecting optical tissue properties from an...

متن کامل

Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography.

Ultrasound-modulated optical tomography is a developing hybrid imaging modality that combines high optical contrast and good ultrasonic resolution for imaging soft biological tissue. We developed a photorefractive-crystal-based, time-resolved detection scheme with the use of a millisecond long ultrasound burst to image both the optical and the mechanical properties of biological tissues, with i...

متن کامل

Signal dependence and noise source in ultrasound-modulated optical tomography.

A Monte Carlo modeling technique was used to simulate ultrasound-modulated optical tomography in inhomogeneous scattering media. The contributions from two different modulation mechanisms were included in the simulation. Results indicate that ultrasound-modulated optical signals are much more sensitive to small embedded objects than unmodulated intensity signals. The differences between embedde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 39 4  شماره 

صفحات  -

تاریخ انتشار 2000